Depurando um Oops do kernel do Linux

Encontrei um tutorial muito interessante de como debugar travamentos do kernel do Linux.

Resolvi postar o conteúdo inteiro aqui para evitar que o site original saia do ar e esta dica acabe sendo perdida.
O link para a fonte da notícia é citada no final deste post.

Quick Summary

Install ksymoops from
Read the ksymoops man page.
ksymoops file to read the data from the kernel
buffers and save it. Or you can cat /proc/kmsg > file, however you
have to break in to stop the transfer, kmsg is a “never ending file”.
If the machine has crashed so badly that you cannot enter commands or
the disk is not available then you have three options :-

(1) Hand copy the text from the screen and type it in after the machine
has restarted. Messy but it is the only option if you have not
planned for a crash.

(2) Boot with a serial console (see Documentation/serial-console.txt),
run a null modem to a second machine and capture the output there
using your favourite communication program. Minicom works well.

(3) Patch the kernel with one of the crash dump patches. These save
data to a floppy disk or video rom or a swap partition. None of
these are standard kernel patches so you have to find and apply
them yourself. Search kernel archives for kmsgdump, lkcd and

No matter how you capture the log output, feed the resulting file to
ksymoops along with /proc/ksyms and /proc/modules that applied at the
time of the crash. /var/log/ksymoops can be useful to capture the
latter, man ksymoops for details.

Full Information

From: Linus Torvalds

How to track down an Oops.. [originally a mail to linux-kernel]

The main trick is having 5 years of experience with those pesky oops
messages 😉

Actually, there are things you can do that make this easier. I have two
separate approaches:

gdb /usr/src/linux/vmlinux
gdb> disassemble

That’s the easy way to find the problem, at least if the bug-report is
well made (like this one was – run through ksymoops to get the
information of which function and the offset in the function that it
happened in).

Oh, it helps if the report happens on a kernel that is compiled with the
same compiler and similar setups.

The other thing to do is disassemble the “Code:” part of the bug report:
ksymoops will do this too with the correct tools, but if you don’t have
the tools you can just do a silly program:

char str[] = “\xXX\xXX\xXX…”;

and compile it with gcc -g and then do “disassemble str” (where the “XX”
stuff are the values reported by the Oops – you can just cut-and-paste
and do a replace of spaces to “\x” – that’s what I do, as I’m too lazy
to write a program to automate this all).

Finally, if you want to see where the code comes from, you can do

cd /usr/src/linux
make fs/buffer.s # or whatever file the bug happened in

and then you get a better idea of what happens than with the gdb

Now, the trick is just then to combine all the data you have: the C
sources (and general knowledge of what it _should_ do), the assembly
listing and the code disassembly (and additionally the register dump you
also get from the “oops” message – that can be useful to see _what_ the
corrupted pointers were, and when you have the assembler listing you can
also match the other registers to whatever C expressions they were used

Essentially, you just look at what doesn’t match (in this case it was the
“Code” disassembly that didn’t match with what the compiler generated).
Then you need to find out _why_ they don’t match. Often it’s simple – you
see that the code uses a NULL pointer and then you look at the code and
wonder how the NULL pointer got there, and if it’s a valid thing to do
you just check against it..

Now, if somebody gets the idea that this is time-consuming and requires
some small amount of concentration, you’re right. Which is why I will
mostly just ignore any panic reports that don’t have the symbol table
info etc looked up: it simply gets too hard to look it up (I have some
programs to search for specific patterns in the kernel code segment, and
sometimes I have been able to look up those kinds of panics too, but
that really requires pretty good knowledge of the kernel just to be able
to pick out the right sequences etc..)

_Sometimes_ it happens that I just see the disassembled code sequence
from the panic, and I know immediately where it’s coming from. That’s when
I get worried that I’ve been doing this for too long 😉


Notes on Oops tracing with klogd:

In order to help Linus and the other kernel developers there has been
substantial support incorporated into klogd for processing protection
faults. In order to have full support for address resolution at least
version 1.3-pl3 of the sysklogd package should be used.

When a protection fault occurs the klogd daemon automatically
translates important addresses in the kernel log messages to their
symbolic equivalents. This translated kernel message is then
forwarded through whatever reporting mechanism klogd is using. The
protection fault message can be simply cut out of the message files
and forwarded to the kernel developers.

Two types of address resolution are performed by klogd. The first is
static translation and the second is dynamic translation. Static
translation uses the file in much the same manner that
ksymoops does. In order to do static translation the klogd daemon
must be able to find a system map file at daemon initialization time.
See the klogd man page for information on how klogd searches for map

Dynamic address translation is important when kernel loadable modules
are being used. Since memory for kernel modules is allocated from the
kernel’s dynamic memory pools there are no fixed locations for either
the start of the module or for functions and symbols in the module.

The kernel supports system calls which allow a program to determine
which modules are loaded and their location in memory. Using these
system calls the klogd daemon builds a symbol table which can be used
to debug a protection fault which occurs in a loadable kernel module.

At the very minimum klogd will provide the name of the module which
generated the protection fault. There may be additional symbolic
information available if the developer of the loadable module chose to
export symbol information from the module.

Since the kernel module environment can be dynamic there must be a
mechanism for notifying the klogd daemon when a change in module
environment occurs. There are command line options available which
allow klogd to signal the currently executing daemon that symbol
information should be refreshed. See the klogd manual page for more

A patch is included with the sysklogd distribution which modifies the
modules-2.0.0 package to automatically signal klogd whenever a module
is loaded or unloaded. Applying this patch provides essentially
seamless support for debugging protection faults which occur with
kernel loadable modules.

The following is an example of a protection fault in a loadable module
processed by klogd:
Aug 29 09:51:01 blizard kernel: Unable to handle kernel paging request at virtual address f15e97cc
Aug 29 09:51:01 blizard kernel: current->tss.cr3 = 0062d000, %cr3 = 0062d000
Aug 29 09:51:01 blizard kernel: *pde = 00000000
Aug 29 09:51:01 blizard kernel: Oops: 0002
Aug 29 09:51:01 blizard kernel: CPU: 0
Aug 29 09:51:01 blizard kernel: EIP: 0010:[oops:_oops+16/3868]
Aug 29 09:51:01 blizard kernel: EFLAGS: 00010212
Aug 29 09:51:01 blizard kernel: eax: 315e97cc ebx: 003a6f80 ecx: 001be77b edx: 00237c0c
Aug 29 09:51:01 blizard kernel: esi: 00000000 edi: bffffdb3 ebp: 00589f90 esp: 00589f8c
Aug 29 09:51:01 blizard kernel: ds: 0018 es: 0018 fs: 002b gs: 002b ss: 0018
Aug 29 09:51:01 blizard kernel: Process oops_test (pid: 3374, process nr: 21, stackpage=00589000)
Aug 29 09:51:01 blizard kernel: Stack: 315e97cc 00589f98 0100b0b4 bffffed4 0012e38e 00240c64 003a6f80 00000001
Aug 29 09:51:01 blizard kernel: 00000000 00237810 bfffff00 0010a7fa 00000003 00000001 00000000 bfffff00
Aug 29 09:51:01 blizard kernel: bffffdb3 bffffed4 ffffffda 0000002b 0007002b 0000002b 0000002b 00000036
Aug 29 09:51:01 blizard kernel: Call Trace: [oops:_oops_ioctl+48/80] [_sys_ioctl+254/272] [_system_call+82/128]
Aug 29 09:51:01 blizard kernel: Code: c7 00 05 00 00 00 eb 08 90 90 90 90 90 90 90 90 89 ec 5d c3

Dr. G.W. Wettstein Oncology Research Div. Computing Facility
Roger Maris Cancer Center INTERNET:
820 4th St. N.
Fargo, ND 58122
Phone: 701-234-7556

Tainted kernels:

Some oops reports contain the string ‘Tainted: ‘ after the program
counter, this indicates that the kernel has been tainted by some
mechanism. The string is followed by a series of position sensitive
characters, each representing a particular tainted value.

1: ‘G’ if all modules loaded have a GPL or compatible license, ‘P’ if
any proprietary module has been loaded. Modules without a
MODULE_LICENSE or with a MODULE_LICENSE that is not recognised by
insmod as GPL compatible are assumed to be proprietary.

2: ‘F’ if any module was force loaded by insmod -f, ‘ ‘ if all
modules were loaded normally.

3: ‘S’ if the oops occurred on an SMP kernel running on hardware that
hasn’t been certified as safe to run multiprocessor.
Currently this occurs only on various Athlons that are not
SMP capable.

The primary reason for the ‘Tainted: ‘ string is to tell kernel
debuggers if this is a clean kernel or if anything unusual has
occurred. Tainting is permanent, even if an offending module is
unloading the tainted value remains to indicate that the kernel is not


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s